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ABSTRACT
We describe our experience in developing ConciergeBot,
an industrial strength question-answering bot for hotels. The
bot automatically suggests answers for information-seeking
questions over an input knowledge base of facts about the
hotel and its amenities. We demonstrate how Concierge-
Bot handles unique challenges that arise in our setting.
More specifically, we show how our system trains effective
models with limited training data, how it can be deployed
in different hotels with almost no hotel-specific tuning, and
how it manages heterogeneity in questions and data. Our ex-
periments validate that ConciergeBot achieves high pre-
cision (78%) and good recall (71%) with as few as 1,300
questions for training purposes.
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1. INTRODUCTION
Our company recently embarked on the task of building a

commercial-strength hotel concierge bot (ConciergeBot),
a question answering (QA) system whose goal is to accu-
rately answer information-seeking inquiries from hotel guests.
These are questions that can be answered by experienced ho-
tel staff without having to consult with the hotel reservation
system or requiring further action. Questions such as “how
can we get to the hotel from the airport?” or “when does the
breakfast start?” are information seeking questions, while
questions such as “can we change our room?” or “can we
have more towels delivered to our room?” are not. The ini-
tial goal is for ConciergeBot to provide three suggested
answers and a member of the hotel staff will either select one
of these suggestions or provide her own (modified) answer.

At the time of the project’s inception, we believed it would
be relatively easy to find off-the-shelf research prototypes or
industrial tools and services for finding the right answers.
Surprisingly, even though the QA problem has received a
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great deal of attention in recent years [1, 15, 17, 5], we could
not immediately apply any existing solutions or tools (e.g.,
Google’s Dialogflow, Amazon Lex, RasaNLU) to our needs
(see Section 4 for a detailed discussion). This is due to two
fundamental challenges that ConciergeBot needs to deal
with in our setting:
1) Adaptability. Our goal is to build a hotel concierge
bot that is adaptable; it can be deployed at a different hotel
without tuning models for that specific hotel as long as the
information about the hotel and its amenities are provided.
This requires a design with no prior commitments to features
or amenities specific to individual hotels.
Another important adaptability requirement is support for
multiple languages, as hotel guests who do not speak English
or the local language spoken in the hotel tend to rely on
QA systems more than other guests. ConciergeBot is
designed to be as language-agnostic as possible so that it
can be deployed in a different language with minimal effort.
2) Limited data. From our experience, the data avail-
able to train ConciergeBot is extremely sparse. There
are some hotels for which there is no record of past mes-
sages between guests and the concierge. For other hotels,
the available data is usually skewed toward a few types of
inquiries (e.g., check-in and check-out time).
In addition to having limited data, we also face the compli-
cation that the data is collected from heterogeneous sources
(i.e., different hotels). For instance, the question “What time
the burger place opens?” would have different answers de-
pending on the hotel. This question may even be irrelevant
for hotels with no restaurants serving burgers.
Contributions. We have developed an industrial strength
ConciergeBot that overcomes the above challenges. Our
experiments demonstrate that ConciergeBot can success-
fully bootstrap using little data and improve its performance
over time. More specifically, ConciergeBot achieves 78%
precision and 71% recall with as little training data as 1,300
questions. It also proves to be adaptable to new settings
(i.e., a 7% drop in F1-score without re-training the models).

2. CONCIERGEBOT’S ARCHITECTURE
Figure 1 illustrates ConciergeBot’s architecture. Its in-

put is a natural language question along with a knowledge
base (KB) storing information about the hotel. The out-
put is the set of relevant answers, also in natural language.
ConciergeBot first consults different scorers, each rely-
ing on a different NLU technique, to score each possible re-
sponse. The obtained scores are then passed to a meta scorer
which outputs a final probability for each answer. The most
probable answer(s) are then verbalized and returned.
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Figure 1: The architecture of ConciergeBot

2.1 Knowledge base
Since information about hotels can be organized hierarchi-

cally, we model our knowledge base about hotels accordingly
(e.g., hotels have a set of facilities where each facility has an
opening and closing time). The KB follows a schema which
enforces a small degree of standardization, such as ensuring
all information regarding the working hours of facilities is
listed under the “hours” attribute. We use XPath notation
(e.g., /amenities/reception/hours) to refer to specific nodes
in the KB.

Each node in the tree (except for the root) is a candi-
date entity or attribute that may be inquired upon. Given
a question, the goal is to find the node that contains the
information the user seeks. As there will always be ques-
tions for which the relevant information is not modeled in
the KB, we also use a special none candidate to deal with
these cases. Choosing none as the answer is equivalent to
refraining from answering the question.

2.2 Scorers
ConciergeBot runs an ensemble of QA systems or scor-

ers. Each scorer processes the input question and outputs
a score for each node in the KB. The node with the highest
score is considered the most relevant answer. Our architec-
ture is extensible to any number of scorers. We deploy three
scorers in ConciergeBot, each with unique strengths (see
Table 1) that contribute to good overall performance.

Semantic Role Labeling (SRL). This scorer leverages
a state-of-the-art semantic role labeling framework called
FrameIt [6]. We train SRL models over a hotel messaging
corpus and build SRL frames for a set of common intents,
such as inquiries about hotel facility locations, hours and
charges, room amenities, and check-in/checkout times. The
scorer then uses the detected frames to score the nodes in
the KB. For instance, for the question “where are the tennis
courts?”, the SRL model detects the HotelFacilityLocation

frame and further extracts “tennis courts” as a filler for the
FacilityName slot of the frame. Finally, each node in the
KB is assigned a score based on how well it matches the
information in the detected frame.

The SRL models are effective at dealing with the nu-
ances in how questions are expressed, and are robust to
the changes in the KB. However, the intents for the SRL
models have to be known a priori and building those mod-
els requires training data, which is largely available only for
frequent intents. Our trained models cover 55% of the ques-
tions. Hence, we complement the SRL scorer with other
scorers that can handle infrequent intents.

Question Similarity (Q-Sim). The Q-Sim scorer com-
pares the input question with previously answered questions
for which the associated KB node is known. For each node

x, the Q-Sim maintains a set of past questions Qx which
seek the information in node x. Given a question, the score
of each node x in the KB is computed as the maximum
similarity between the input question and the questions in
Qx. We evaluated several methods for computing question
similarity and we settled on cosine similarity of FastText [7]
sentence embeddings in our implementation. Note that the
performance of Q-Sim naturally improves over time, as more
question-path pairs are collected through relevance feed-
back. This scorer is easily adaptable to other languages as
pre-trained FastText models are available for 294 languages.

Lexicon-based Parser (LexParse). LexParse identifies
the entity and the attribute (if any) in the question using
a domain-specific lexicon. For example, the Check-in entity
is associated with phrases such as “check in” and “arrive”
in the lexicon. Similarly, phrases “how late” and “what
time” are associated with the hours attribute. Using the
lexicon, each candidate node in the KB is assigned both
an entity match score and an attribute match score. Addi-
tionally, for each hotel, we automatically extend the lexicon
to include the names that appear in the KB. For example,
for the question “what time does The Grill open?”, the node
/amenities/restaurants/[name=’The Grill’]/hours receives a
high score because “The Grill” matches the name predicate.
This scorer works well for common inquiries for which the
linguistic domain is curated by domain experts. It can sup-
port other languages as long as a lexicon in the desired lan-
guage is provided.

Finally, we discuss how the special node none is scored by
the above scorers. With the exception of Q-Sim, all scorers
score none with value 1 if no significant score is assigned to
other nodes in the KB and 0 otherwise. Therefore, the none

score is not comparable with other nodes’ scores. The Q-
Sim scorer, however, can directly score none in the same way
as the other nodes by maintaining a list of past questions
with none as their label.

2.3 Score to Probability
Since the scorers use different approaches, the scores they

calculate are not comparable. The score to probability (S2P)
component alleviates this problem by converting the scores
produced by each scorer into probabilities. As we expect
ConciergeBot to be adaptable to new KBs, the method
for converting scores to probabilities should be independent
of the actual candidate nodes in the input KB. To achieve
this, the S2P computes the probability of each node x in the
KB using the scorer Si as:

Pi(x) =
eαiSi(x)

eβiSi(none) +
∑
x′∈KB e

αiSi(x′)
(1)

Note that none of the parameters depend on node x. In
fact, these parameters only determine how the results of
each scorer should be normalized regardless of what and
how many nodes are being scored. This enables us to use
the same set of parameters over different KBs. Note that
the score for node none is scaled using a different parameter
(βi) as its score does not follow the same distribution as the
other nodes in the KB. During the training phase, the S2P
component learns the αi and βi parameters for each scorer
by optimizing the logarithmic loss.

2.4 Meta Scorer
The Meta Scorer is the module that orchestrates the en-

semble. Given the input question, it decides how to combine
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Strengths Example that works well

SRL robust to linguistic variations; highly portable Where are the tennis courts?
Q-Sim utilizes past data; improves over time; adaptable to other languages Where can we leave our stuff?

LexParse utilizes domain knowledge; language agnostic What time does The Grill open?

Table 1: An overview of scorers in ConciergeBot.

the probabilities obtained from each scorer. The meta scorer
needs to be KB agnostic to ensure that the system is adapt-
able. To achieve this, the meta scorer computes a weight wi
for each of the scorers Si based on the input question which
we describe shortly. The final probability for each node x is
then computed as follows:

P (x) = softmax(

n∑
i=1

Pi(x) ∗ wi) (2)

Note that n refers to the number of scorers (i.e., 3 in our
case). The weights wi are computed using a dense feed-
forward neural network with one hidden layer. The network
takes as input the embedding of the input question (using
FastText) which is a vector of size 700. The hidden layer
consists of 100 nodes and the output layer consists of 3 nodes
corresponding to the three available scorers. All activation
functions are ReLU. The objective is to minimize the loga-
rithmic loss of the probabilities obtained from Equation 2.

As mentioned earlier, many input questions may not be
information-seeking. To deal with this data imbalance prob-
lem we assign a different sample weight η to questions with
none label during the training phase.

2.5 Constructing Answers
After the final probabilities P for each node in the KB (as

well as none) are computed, this module sorts and selects the
top-k probable nodes. We design it so that any node that
has a probability smaller than none is ignored. In other
words, the system prefers not answering over suggesting a
probably wrong answer. Due to this pruning, our system
often returns one candidate node even when we allow for 3
candidates to be returned. Finally, we assume each node in
the KB also stores a message that verbalizes the information
stored therein, which is usually provided by the hotel. While
Natural Language Generation would be an option here, our
clients preferred having carefully curated answers for the
guests. Hence, by design, a returned node has an associated
answer in natural language.

3. EXPERIMENTS
Here, we show that ConciergeBot achieves a good per-

formance (F1-score of 0.75) using as little as 1,300 training
examples over a KB with more than 300 nodes. Moreover,
we show that changes in the KB only drop the overall F1-
score by 7%. We describe our experimental setup next.

Training data and KB construction. Our training data
consists of past conversations between guests and hotel concierge
staff that are obtained from partner hotels which have been
using our messaging platform for communication. Since
many guest messages such as arrival updates or thank you
notes are irrelevant, we applied a set of heuristics1 to fil-
ter for actual questions. To further increase data quality
we also removed malformed sentences or questions that are
part of an ongoing conversation (e.g., what else? ). We were
left with about 1,700 questions after this step.
1For instance, selecting messages with a ? mark or sentences
with BARQ or SQ tags in their constituency parse trees.

0.4

0.5

0.6

0.7

500 1000

training−data size

F
1−

S
co

re

CB top−1
CB top−3
LR top−3

(a) ConciergeBot’s F1-score

0.1

0.2

0.3

0.4

0.5

500 1000

training−data size

sc
or

er
 w

ei
gh

t

SRL
LexParse
Q−Sim

(b) Average scorers’ weight

Figure 2: ConciergeBot’s behavior with different amounts
of training data

Next, we developed a unified KB by adding the requested
information for each question and labeling it accordingly.
For questions that are too detailed or rare, we omit them
from the KB and label them as none (e.g., “does the door
get locked automatically?”). Through refining and extending
the KB while annotating, we have roughly 300 unique nodes
in the KB, which now constitutes an exhaustive and detailed
model of the services and amenities offered by most hotels.

Evaluation metrics. We randomly selected 20% of our la-
beled data (i.e., 345 questions) as our test set for evaluation.
We report precision, recall and the F1-score at top-k results
achieved by ConciergeBot in our experiments.

Performance with limited data. Figure 2a shows the
performance of ConciergeBot (CB for short) given differ-
ent amounts of training data. By tuning parameter η (i.e.,
the weight associated with the none label), we can adjust
the trade-off between precision and recall. We use η = 0.35
in our experiments as it yields the best F1-score. Figure 2a
shows that the meta scorer notably boosts the performance
with just a few hundred training examples. In fact, CB’s
top-3 performance is already at 0.67 F1-score given only
250 examples and it improves rapidly with more training
data. For instance, we observe more than 34% improve-
ment in the F1-score for CB’s top-1 answer using only 1,000
more data points. Finally, Figure 2a also shows the top-3
performance of a Logistic Regression (LR) baseline trained
over the FastText embeddings of questions as features. We
omitted the LR top-1 results as they were not competitive.
To obtain strong LR performance, we simplified its task by
limiting its KB to only 77 nodes for which training examples
were available (CB handles 300 nodes in comparison). Fur-
thermore, LR ignores the adaptability requirement. Despite
these simplifications, CB still outperforms LR by achieving
10% improvement in F1-score.

Bootstrapping. Recall that each scorer has its own strengths.
In particular, Q-Sim is a data-driven approach which im-
proves over time as more answers are provided via Concierge-
Bot to questions from guests. Figure 2b confirms this trend
where the meta scorer relies more and more on Q-Sim over
time. The x-axis shows how much data is provided to the
system, and the y-axis demonstrates the average weight that
the meta scorer assigns to each of the three components for
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F1@3 (@1) P@3 (@1) R@3 (@1)

No data 0.65 (0.57) 0.64 (0.56) 0.67 (0.58)
Past data 0.70 (0.53) 0.69 (0.53) 0.70 (0.54)

Table 2: Performance over unseen nodes in the KB.

the question in the test set. Note that the weights are nor-
malized so that they sum up to 1.

Measuring adaptability. We now evaluate how well the
ConciergeBot performs on inquiries that were not ob-
served as part of the training data. This experiment will
inform us on how well we can adapt to a different client
hotel where the KB is likely to be different.

We randomly omit 20% of nodes in the KB along with
their associated questions from the training set and train
ConciergeBot on the remaining data. We evaluate the
system using the questions that were omitted. We repeated
the experiment for 10 trials. The average size of the evalua-
tion set (per trial) was roughly 110 questions. Table 2 shows
the average performance achieved by ConciergeBot over
10 trials. Note that @1 and @3 notations refer to the perfor-
mance by selecting the top-1 and top-3 candidate answers
respectively. The first row corresponds to the case where
no data is available over the nodes in the new KB, while
the second row shows the results when Q-sim has access to
set of past question over the new KB2. We can observe that
we obtain a F1-score of 0.65 with access to no hotel-specific
data and no adjustments to the model. The obtained F1-
score is 0.70 when past data is available which is only a 7%
drop compared to the 0.75 F1-score achieved in Figure 2a.

4. RELATED WORK
QA systems can be grouped based on the information

sources they rely on [11]. Most QA systems over knowledge-
bases process the input questions at two levels: the lexical
and the compositional level [8]. At the lexical level, the sys-
tems find a mapping between phrases in the question and
the entities in the knowledge base. At the compositional
level, the systems interpret the semantics of the question
using the discovered entities and relations.

At the lexical level, most restricted-domain QA systems
either rely on manually curated lexicons for their specific do-
main [16, 2], use fuzzy string matching techniques [14, 13,
4], or consult lexical databases such as WordNet or collec-
tions of known named entities [15, 10]. Although the scorers
in ConciergeBot use similar techniques, our setup has its
own unique challenges since the solution needs to be adapt-
able and deal with heterogeneous data. Open-domain QA
systems, on the other hand, rely on the large amount of
text available on the web, and build a lexicon by analyz-
ing the alignments between the KB entities and phrases in
the text [1, 17]. Obviously, we cannot use such techniques
as the amount of data available in our setting is too small.
Finally, existing industrial NLU tools including Dialogflow,
Amazon Lex, and RasaNLU are designed to detect and serve
answers for a set of predefined intents (which is not possi-
ble to enumerate in our setting). Dialogflow has recently
released a beta feature to serve a KB. However, the KB is
expected to be an information-dense text document similar
to encyclopedia articles.

2The test questions are excluded from the set of past ques-
tions in a leave-one-out-cross-validation (LOOCV) manner.

There is a large body of work on analyzing questions at
the compositional level [12, 3, 9]. However, we observed
that there is almost no need for compositional analysis of
questions in our setting. This is because almost all questions
involve only a single entity in the KB, and thus a successful
lexical analysis is sufficient to generate a proper response.

5. CONCLUSIONS AND FUTURE WORK
We have described the challenges we face in building an in-

dustrial strength concierge bot. We have shown that one can
develop a bot that achieves good performance with a very
limited amount of training data while maintaining adapt-
ability through a powerful ensemble classification approach.

There are several directions for future work. One chal-
lenge is to go beyond information seeking questions. An-
other is to handle follow-up questions and multi-message
threads which requires reasoning based on the context.
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